Abstract

Objectives Though the pathophysiology underlying schizophrenia (SCZ) and bipolar disorder (BD) is not fully understood, immune function may be dysregulated, with microglia, the brain’s resident immune cells, implicated in this process. Signalling between the neuronal chemokine fractalkine (CX3CL1) and its microglial receptor CX3CR1 facilitates neuron-microglia interactions, influencing microglial activation and synaptic function. As such, alterations in fractalkine signalling may contribute to immune and synaptic alterations observed in SCZ and BD. Methods Protein and mRNA expression of fractalkine, CX3CR1, and a disintegrin and metalloproteinase 10 (ADAM10), a sheddase that cleaves fractalkine, were quantified in post-mortem frontal cortex from individuals with SCZ (n = 35), BD (n = 34), and matched controls (n = 35) using immunoblotting and droplet digital PCR. In addition, the relationship between fractalkine pathway members and levels of the pre-synaptic protein SNAP-25 was examined. Results Fractalkine protein levels were significantly lower in SCZ relative to controls. Expression of members of the fractalkine signalling pathway was unchanged in BD. CX3CR1 protein levels were significantly correlated with SNAP-25 levels. Conclusions The observed deficit in fractalkine protein levels in SCZ is consistent with impaired neuron-microglia crosstalk in this disorder. Furthermore, our data are suggestive of an aberrant association between microglial function and synaptic density in SCZ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.