Abstract

We investigated whether regulation of aquaporin (AQP) water channels is altered in the ureteral-obstructed kidney. Male Sprague-Dawley rats were unilaterally obstructed of their left proximal ureters for 48 h. The protein expression of AQP1-3 channels was determined in the kidney by Western blot analysis. The expression of AQP2 was also determined by immunohistochemistry. In order to specifically determine primary impairment of the pathway leading to an altered regulation of AQP channels stimulated by the arginine vasopressin (AVP)/cyclic adenosine monophosphate (cAMP) pathway, the catalytic activity and protein expression of different parts of the adenylyl cyclase complex were separately determined. In the previously obstructed kidney, urinary osmolality and free water reabsorption were greatly decreased. The expression of AQP2 proteins was decreased in the cortex, outer medulla and inner medulla. Immunohistochemistry also showed a marked decrease in AQP2 expression. The expression of AQP1 and AQP3 was decreased in the outer medulla and inner medulla. cAMP generation in response to AVP, sodium fluoride or forskolin was greatly decreased. The expression of Gsalpha and adenylyl cyclase VI proteins was decreased. The contralateral kidney showed minimal or no changes in these parameters. The reduced abundance of AQP water channels may at least partly account for the urinary concentration defect in the ureteral-obstructed kidney. The primary point of impairment of AQP channels regulated by the AVP/cAMP pathway may lie at the level of the catalytic unit of adenylyl cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.