Abstract

Anaplasma phagocytophilum propagates within neutrophils and causes a disease marked by inflammatory tissue injury or complicated by opportunistic infections. We hypothesized that infection with A. phagocytophilum modifies the binding of neutrophils to endothelial cells and the expression of neutrophil adhesion molecules and studied these changes in vitro. Infected dimethyl sulfoxide-differentiated HL-60 cells and neutrophils showed reduced binding to cultured brain and systemic endothelial cells and lost expression of P-selectin glycoprotein ligand 1 (PSGL-1, CD162) and L-selectin (CD62L) (to 33 and 5% of control values, respectively), at a time when the levels of beta(2) integrin and immunoglobulin superfamily adhesion molecules and activation markers Mac-1 and intercellular adhesion molecule 1 increased (5 to 10 times that of the control). The loss of CD162 and CD62L expression was inhibited by EDTA, which suggests that neutrophil activation and sheddase cleavage occurred. The loss of selectin expression and the retained viability of the neutrophils persisted for at least 18 h with A. phagocytophilum infection, whereas Escherichia coli and Staphylococcus aureus rapidly killed neutrophils. The adhesion defect might increase the numbers of infected cells and their persistence in the blood prior to tick bites. However, decreased CD162 expression and poor endothelial cell binding may partly explain impaired host defenses, while simultaneous neutrophil activation may aggravate inflammation. These observations may help us to understand the modified biological responses, host inflammation, and immune response that occur with A. phagocytophilum infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call