Abstract

Both developmental pluripotency-associated protein 3 (Dppa3/Stella/PGC7) and dioxygenase ten-eleven translocation 3 (Tet3) are maternal factors that regulate DNA methylation reprogramming during early embryogenesis. In the mouse zygote, dimethylated histone H3 lysine 9 (H3K9me2) attracts Dppa3 to prevent Tet3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here, we addressed the interplay between Dppa3 and Tet3 or H3K9me2 in somatic cells. In mouse NIH3T3 cells, the exogenously expressed Dppa3 preferentially accumulated in the cytoplasm and had no effect on Tet3-mediated 5hmC generation. In HeLa cells, the expressed Dppa3 was predominantly localised in the nucleus and could partially suppress Tet3-induced 5hmC accumulation, but this suppressive function was not correlated with H3K9me2. Co-immunoprecipitation assays further revealed an interaction of Dppa3 with Tet3 but not with H3K9me2 in HeLa cells. In cloned zygotes from somatic cells, Dppa3 distribution and 5hmC accumulation in nuclei were not affected by H3K9me2 levels. Taken together, these results suggest that H3K9me2 is not functionally associated with Dppa3 and Tet3 in somatic cells or somatic cell cloned embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.