Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphological phenotypes on Matrigel, and expression of vascular endothelial growth factor (VEGF). DDAH over-expressing ECV304 cells secreted less ADMA and when grown on Matrigel had enhanced tube formation compared to untransfected cells. VEGF mRNA levels were 2.1-fold higher in both ECV304 and murine endothelial cells (sEnd.1) over-expressing DDAH. In addition the DDAH inhibitor, S-2-amino-4(3-methylguanidino)butanoic acid (4124W 1 mM), markedly reduced human umbilical vein endothelial cell tube formation in vitro. We have found that upregulating DDAH activity lowers ADMA levels, increases the levels of VEGF mRNA in endothelial cells, and enhances tube formation in an in vitro model, whilst blockade of DDAH reduces tube formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.