Abstract

Anoxic sediment slurries prepared from Spartina salt marsh soils contained dimethyl sulfide (DMS) at concentrations ranging from 1 to 10 μM. DMS was produced in slurries over the initial 1–24 h incubation. After the initial period of production, DMS decreased to undetectable levels and methane thiol (MSH) was produced. Inhibition of methanogenesis caused a 20% decrease in the rate of DMS consumption, while inhibition of sulfate reduction caused a 80% decrease in DMS consumption. When sulfate reduction and methanogenesis were simultaneously inhibited, DMS did not decrease. DMS contributed about 28% to the methane production rate, while DMS probably contributed only 1% or less to the sulfate reduction rate. Incubation of the sediment slurries under an atmosphere of air resulted in similar DMS consumption compared to anaerobic incubations, but MSH and CH4 were not evolved. Sediments from the marsh released significant quantities of DMS when treated with cold alkali, indicating that potentially significant sources of DMS existed in the sediments. Values of base-hydrolyzable DMS as high as 190 μmol per liter of sediment were observed near the sediment surface, and values always decreased with depth in the sediment. Simple flux experiments with small intact sediment cores, showed that DMS was emitted from the marsh surface when cores were injected with glutaraldehyde or molybdate and 2-bromoethanesulfonate (BES), but nit when cores were left uninhibited. These results showed that DMS was readily metabolized by microbes in marsh sediments and that this metabolism may be responsible for reducing the emission of DMS from the marsh surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.