Abstract

Abstract. As the sea surface microlayer (SML) is the uppermost oceanic layer and differs in biogeochemical composition to the underlying subsurface water (SSW), it is important to determine whether processes in the SML modulate gas exchange, particularly for climate active gases. Enrichment of dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) has been reported in the SML, but it remains unclear how this is maintained whilst DMS is lost to the atmosphere. To examine this, a comprehensive study of DMS source and sink processes, including production, consumption, and net response to irradiance, was carried out in deck-board incubations of SML water at five locations in different water masses in the southwestern Pacific east of New Zealand. Net consumption of DMSP and production of DMS in the light and dark occurred at all sites. The net response of DMS and DMSP to irradiance varied between stations but was always lower than conversion of DMSP to DMS in the dark. In addition, DMS photolytic turnover was slower than reported elsewhere, which was unexpected given the high light exposure in the SML incubations. Although no relationships were apparent between DMS process rates and biogeochemical variables, including chlorophyll a, bacteria, and phytoplankton groups, net bacterial DMSP consumption was correlated with DMSP and DMS concentrations and also dinoflagellate and Gymnodinium spp. biomass, supporting the findings of a companion study that dinoflagellates play an important role in DMS cycling in the SML. However, net DMS production rates and accumulation were low relative to regional air–sea DMS loss, indicating that DMS cycling within the SML is unlikely to influence regional DMS emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call