Abstract

Solid epoxy resin oligomers have traditionally been utilized for coatings that combine fast dry-to-touch speed and good flexibility, properties greatly in demand in many applications such as marine and industrial maintenance coatings. Unfortunately, solid epoxy resins require formulation with large quantities of solvent that make the attainment of modern VOC regulations difficult or impossible. Coatings formulated from low molecular weight liquid epoxy resin (LER) on the other hand, can more easily meet VOC challenges, but dry slowly and tend to be brittle. This article explores the concept of using fast reacting, difunctional amine chain extenders to generate epoxy oligomers in situ as a means of meeting these opposing property demands. Methylamine-terminated poly(N-methylazetidine) (p-NMAz) is prepared in a two-step process involving the Michael addition of methylamine to acrylonitrile followed by hydrogenation in a methylamine-containing atmosphere to yield an oligomer stream with an Mn of about 250. Hydrogenation of isophthalonitrile in a methylamine-containing atmosphere yields N,N′-dimethyl-meta-xylylenediamine (DMMXDA). Competitive pseudo-first-order kinetic measurements conducted in isopropyl alcohol indicate these amines react approximately 3–3.6 times faster with phenyl glycidyl ether (PGE) than the primary amine meta-xylylenediamine (MXDA). These chain extenders can be formulated with traditional multifunctional amine crosslinkers to yield coatings with lower VOC, faster dry speed, and better flexibility compared with corresponding coatings formulated without the chain extender. Consistent with their chemical structures, p-NMAz proved capable of yielding coatings with the best impact resistance and mandrel bend properties, while DMMXDA yielded coatings with better water and corrosion resistance properties. Open image in new window

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.