Abstract

Here, we explore a de novo sequencing strategy in which we combine Lys-N protein digestion with differential isotopic dimethyl labeling to facilitate the (de novo) identification of multiply charged peptides in ESI-MS, both under CID and ETD conditions. For a large fraction of the Lys-N generated peptides, all primary amines are present at the N-terminal lysine, enabling specific labeling of the N-terminus. Differential derivatization of only the peptide N-terminus in combination with the simultaneous fragmentation of the corresponding isotopologues allows the straightforward distinction of N-terminal fragments from C-terminal and internal fragments. Furthermore, also singly and multiply charged N-terminal fragments can easily be distinguished due to the mass differences of the isotope labeled fragment pairs. As a proof of concept, we applied this approach to proteins isolated from an avocado fruit, and were able to partially de novo sequence and correctly align, with green plant homologues, a previously uncharacterized avocado ascorbate peroxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call