Abstract

We aimed to investigate the therapeutic role of dimethyl fumarate (DMF) in fungal keratitis. Human corneal epithelial cells (HCECs) and mouse models of fungal keratitis were used in this study. The antifungal effect of DMF on Aspergillus fumigatus (A. fumigatus) was confirmed by examining the minimum inhibitory concentration (MIC), biofilm formation, conidial adherence and corneal fungal loads. Slit-lamp photography, haematoxylin and eosin staining and immunostaining were used to assess the severity of corneal impairment. RT-PCR, western blot, ELISA, immunohistochemistry and immunostaining were performed to examine the effects of DMF on the expression of the inflammatory mediators during fungal infection. In vitro, DMF limited A. fumigatus growth, biofilm formation, and conidial adherence and reduced the mRNA levels of AldA, GlkA, GAPDH, HxkA, PgkA, Sdh2, GelA and ChsF in A. fumigatus. In vivo, DMF effectively decreased corneal fungal loads. DMF attenuated corneal inflammatory impairment by suppressing inflammatory cell accumulation and downregulating cytokine expression. DMF notably downregulated the high expression of NLRP3, cleaved GSDMD, cleaved caspase-1, mature IL-1β and mature IL-18 induced by fungi. The production of Nrf2 and HO-1 could be further increased by DMF in infected HCECs. Nrf2 siRNA pretreatment counteracted DMF-mediated downregulation of the expression of the active forms of IL-18, IL-1β, caspase-1 and GSDMD. DMF limits fungal growth by suppressing biofilm formation, conidial adherence and respiratory metabolism. It also exerts an anti-inflammatory effect on fungal keratitis by inhibiting pyroptosis, which could be regulated by Nrf2. Our results suggest that DMF plays a therapeutic role in fungal keratitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.