Abstract
Dimethyl fumarate (DMF) was recently approved by the FDA for the treatment of relapsing remitting MS. The pathology of MS is a result of both immune dysregulation and oxidative stress induced damage, and DMF is believed to have therapeutic effects on both of these processes. However, the mechanisms of action of DMF are not fully understood. To determine if DMF is able to activate signaling cascades that affect immune dysregulation, we treated human peripheral blood mononuclear cells with DMF. We discovered that DMF stimulates cyclic adenosine monophosphate (cAMP) production after 1 min treatment in vitro. cAMP is a small molecule second messenger that has been shown to modulate immune response. Using pharmacological inhibitors, we determined that adenylyl cyclase mediates DMF induced cAMP production; DMF activated the prostaglandin EP2 receptor to produce cAMP. This response was not due to increased endogenous production of prostaglandin E2 (PGE2), but was enhanced by addition of exogenous PGE2. Furthermore, we determined that the bioactive metabolite of DMF, monomethyl fumarate (MMF), also stimulates cAMP production. These novel findings suggest that DMF may provide protection against MS by inhibiting immune cell function via the cAMP signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.