Abstract

Dimesitylketone O-oxide 1b was synthesized by photolysis of dimesityldiazomethane dissolved in an oxygen saturated CCl3F solution at 140 K. Conformation and geometry of 1b were determined by comparing measured NMR chemical shifts with the corresponding chemical shifts calculated at the DFT-IGLO level of theory where it had to be considered that the molecule exists in two enantiomeric forms. Measured and calculated 1H chemical shifts agree within 0.1 ppm while the calculated 13C shift of the COO carbon (210.6 ppm) differs by only 0.4 ppm from the measured shift of 211.0 ppm. The two mesityl rings are perpendicular to each other and enclose angles of 40 and 57 degrees with the COO plane. The preferred rearrangement process of 1b is an H migration from one of the ortho-methyl groups to the terminal O atom of the COO unit. The calculated activation enthalpy of this process is 12.7 kcal/mol (B3LYP/cc-pVTZ). In contrast, the activation enthalpy for isomerization to dioxirane is 5 kcal/mol higher. In CCl3F, the activation barrier for the thermal decay was determined to be 13.8 +/- 0.2 kcal/mol and in acetonitrile 13.1 +/- 0.4 kcal/mol. H migration initiates cleavage of the OO bond and the production of an OH and a benzyl radical. Recombination of the latter in the solvent cage leads to the formation of 2-methylhydroxy-pentamethylbenzophenone, while escape of the OH radical from the solvent cage yields a ketone. These results confirm the possibility of OH production from carbonyl oxides in the solution phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call