Abstract

Dimers of ethylene carbonate and propylene carbonate are created in supersonic jet expansions and characterized by FTIR spectroscopy. Fermi resonances are switched on and off by dimerization. There is a unique centrosymmetric dimer of ethylene carbonate in a pronounced case of complementary chirality synchronization, contributing to its energy storage capacity at melting. Two chiral propylene carbonate molecules combine in more intricate ways. If they have the same handedness, one of them is forced into an axial conformation and the binding partner stays in the more stable equatorial structure. If they have opposite handedness, centrosymmetric dimers of either axial or equatorial conformations are formed. This suggests the usefulness of chirality control in elucidating ionic transport mechanisms in battery solvents and asymmetric catalysis in such solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call