Abstract
Recombinant AAV vectors containing a dimerizer-inducible system of transcriptional activation provide a strategy for control of therapeutic gene expression in the CNS. Here we explored this system for regulated expression of human aromatic l-amino acid decarboxylase (hAADC) in a rodent model of Parkinson disease. Expression of hAADC, the enzyme that converts l-dopa to dopamine, was dependent on reconstitution of a functional transcription factor (TF) by the dimerizer rapamycin. Two vectors, AAV-CMV-TF and AAV-Z12-hAADC, were infused into striata of 6-OHDA-lesioned rats. Rapamycin-induced increases in expression of hAADC repeatedly produced robust rotational behavior in response to low doses of l-dopa. Seven weeks after vector infusion, AADC expression in brain was quantitated by both stereology and Western blot analysis following the final rapamycin treatment. While a low level of hAADC was observed in rats that were not induced with rapamycin, this basal expression was not significant enough to elicit a rotational response to l-dopa. This study demonstrated a robust behavioral response of parkinsonian rats to regulated hAADC expression. Recombinant AAV vectors controlled by rapamycin or its analogs show promise as candidates for CNS therapies in which regulation of the transgene is desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.