Abstract

We investigate the self-reaction of benzyl, C7 H7 , in a high-temperature pyrolysis reactor. The work is motivated by the observation that resonance-stabilized benzyl radicals can accumulate in reactive environments and contribute to the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. Reaction products are detected by IR/UV ion dip spectroscopy, using infrared radiation from the free electron laser FELIX, and are identified by comparison with computed spectra. Among the reaction products identified by their IR absorption are several PAHs linked to toluene combustion such as bibenzyl, phenanthrene, diphenylmethane, and fluorene. The identification of 9,10-dihydrophenanthrene provides evidence for a mechanism of phenanthrene formation from bibenzyl that proceeds by initial cyclization rather than an initial hydrogen loss to stilbene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.