Abstract

Dimerization of multicopy plasmids is widely assumed to be disadvantageous both for plasmid maintenance and for the host cell. It is known that dimerization causes plasmid instability; dimer-containing cells grow slower than their monomer-containing counterparts. However, as we demonstrate here, under conditions of selective stress, dimers provide an advantage for bacteria. Dimers facilitate segregation of mutants from numerous copies of the parental plasmid. Accelerated segregation greatly increases the rate of accumulation of plasmids carrying mutations that are adaptive for bacteria. In contrast, resolution of dimers by site-specific recombination decreases, 10(3)-10(5)-fold, the efficiency of selection of spontaneous reversions in the tet gene of pBR327.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.