Abstract

Homodimerization of the membrane-bound collagenase MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase)] is crucial for its collagenolytic activity. However, it is not clear whether this dimerization is regulated during cellular invasion into three-dimensional collagen matrices. To address this question, we established a fluorescence resonance energy transfer system to detect MT1-MMP dimerization and analysed the process in cells invading through three-dimensional collagen. Our data indicate that dimerization occurs dynamically and constantly at the leading edge of migrating cells, but not the trailing edge. We found that polarized dimerization was not due to ECM (extracellular matrix) attachment, but was rather controlled by reorganization of the actin cytoskeleton by the small GTPases, Cdc42 (cell division cycle 42) and Rac1. Our data indicate that cell-surface collagenolytic activity is regulated co-ordinately with cell migration events to enable penetration of the matrix physical barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.