Abstract

Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.