Abstract

In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4. Gcn4p is a transcriptional activator of hundreds of genes involved in remedying nutrient deprivation. In addition to a conserved kinase domain, Gcn2p has a regulatory region homologous to histidyl tRNA synthetase enzymes that binds uncharged tRNA that accumulates during amino acid starvation. Flanking the carboxyl terminus of the histidyl-tRNA synthetase-related domain is a region spanning 162 residues that participates in the activation of the protein kinase. Gel filtration and chemical cross-linking analysis of the recombinant carboxyl-terminal Gcn2 protein revealed that this region is a stable homodimer that is highly resistant to high concentrations of salt. Residue alterations in three hydrophobic segments and one segment with a proposed amphipathic alpha-helix in this Gcn2p carboxyl terminus blocked oligomerization, supporting the role of hydrophobic interactions in the dimerization interface of Gcn2p. Introduction of residue substitutions that impaired dimerization into the full-length protein prevented the ability of Gcn2p to phosphorylate its substrate eukaryotic initiation factor-2alpha and induce GCN4 translational expression in yeast cells subjected to a variety of stresses including amino acid limitation or exposure to rapamycin or high levels of NaCl. This latter stress can be overcome by addition of increasing amounts of K+ ions, indicating that the Na+/K+ ion balance is central to this stress induction. We conclude that dimerization involving hydrophobic segments in the carboxyl-terminal region is required for activation of Gcn2p in response to a multitude of stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.