Abstract
The electrochemical behavior of 2-, 3-, and 4-nitrosonitrobenzenes (NNB) in DMF (with Bu4NClO4 suppoting salt) in the presence and in the absence of different proton donors (water, phenol, benzoic, acetic, chloroacetic, and sulfuric acids) is studied by the methods of cyclic voltammetry, chronoamperometry and also by electrolysis at the controlled potential. The electrochemical reduction of these compounds is shown to preferentially afford either monomeric (N-nitrophenylhydroxylamines) or dimeric (azoxy compounds) products, which is determined by the interplay between reactions of protonation and dimerization of NNB radical anions. The dimerization reactions proceed fast and reversibly to afford the corresponding dimeric dianions with the basicity much higher as compared with NNB radical anions as the result of which the monomeric products are formed in the presence of “strong” proton donors and the dimeric products form in the presence of “weak” proton donors. Like the effective rate of formation of dimeric products, the basicity of radical anions increases in the row 4- < 3- < 2-NNB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.