Abstract

In patients classified with type 1 and type 3 von Willebrand disease missense mutations resulting in the loss of cysteine residues in the D3-domain (multimerization area) and in the carboxy-terminus (dimerization area) of the von Willebrand factor (VWF) have been identified. We have investigated how these structural changes result in a quantitative VWF deficiency and how they interfere with the dimerization and multimerization processes. The effect of mutations in the multimerization area (C1130F, C1149R) and in the dimerization area (C2671Y, C2739Y, C2754W) of human recombinant VWF were investigated in transient transfection assays in 293T cells. All mutations resulted in reduced secretion of VWF in the medium and in intracellular retention. The amino-terminal mutants C1130F and C1149R showed impaired multimerization by lacking high molecular weight (HMW) multimers, in cotransfection experiments with wild-type (wt) VWF, the multimeric pattern was consistent with the pattern in the heterozygous type 1 patients. The carboxy-terminal mutants C2739Y and C2754W showed strongly reduced to nearly absent secretion of VWF, consistent with type 3 VWD. The multimeric pattern of C2739Y and C2754W is characterized by the absence of HMW multimers, an excess of monomers and intervening odd-numbered multimeric bands, indicating a dimerization defect. The carboxy-terminal mutant C2671Y is different, with mildly reduced secretion, intermediate intracellular retention and a normal multimerization pattern. We conclude that, in accordance with a phenotype of quantitative VWF deficiency, all cysteine mutants show impaired secretion, although the decrease of VWF in vitro appears lower than in the patients, suggesting additional, possibly heightened clearance, mechanisms in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.