Abstract

G protein Coupled Receptors (GPCRs) are allosteric proteins whose functioning fundamentals are the communication between the two poles of the helix bundle. The representation of GPCR structures as networks of interacting amino acids can be a meaningful way to decipher the impact of ligand and of dimerization/oligomerization on the molecular communication intrinsic to the protein fold. In this study, we predicted likely homodimer architectures of the A 2AR and investigated the effects of dimerization on the structure network and the communication paths of the monomeric form. The results of this study emphasize the roles of helix 1 in A 2AR dimerization and of highly conserved amino acids in helices 1, 2, 6 and 7 in maintaining the structure network of the A 2AR through a persistent hub behavior as well as in the information flow between the extracellular and intracellular poles of the helix bundle. The arginine of the conserved E/DRY motif, R3.50, is not involved in the communication paths but participates in the structure network as a stable hub, being linked to both D3.49 and E6.30 like in the inactive states of rhodopsin. A 2AR dimerization affects the communication networks intrinsic to the receptor fold in a way dependent on the dimer architecture. Certain architectures retain the most recurrent communication paths with respect to the monomeric antagonist-bound form but enhancing path numbers and frequencies, whereas some others impair ligand-mediated communication networks. Ligand binding affects the network as well. Overall, the communication network that pertains to the functional dynamics of a GPCR is expected to be influenced by ligand functionality, oligomeric order and architecture of the supramolecular assembly. This article is part of a Special Issue entitled: “Adenosine Receptors”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.