Abstract

Three Schizosaccharomyces pombe dimeric tRNA genes, consisting of a tRNASer gene encoding a minor species with an intervening sequence followed by a tRNAMeti gene, have been described [Mao et al. (1980) Cell 21, 509-516; Hottinger et al. (1982) Mol. Gen. Genet. 188, 219-224; Willis et al. (1984) EMBO J. 3, 1573-1580]. We have examined the reason for the dimeric structure by comparing the transcriptional efficiencies and competitive abilities of the genes subcloned from the dimeric arrangement. Both of the subcloned genes are active in vivo in Saccharomyces cerevisiae, but only the tRNASer gene is efficiently transcribed in vitro. The tRNASer gene competes efficiently for transcription factors, while the tRNAMeti gene does so only weakly. Thus, it appears that the dimeric arrangement is required to support expression of the tRNAMeti gene. S. pombe genes encoding major species of tRNASer are transcribed considerably less efficiently than are the minor genes from the dimers, so coupling of the tRNAMeti gene to the minor species genes should lead to efficient production of tRNAMeti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.