Abstract
Nature is full of dimeric alkaloids of various types from many plant families, some of them with interesting biological properties. However, dimeric Cinchona alkaloids were not isolated from any species but were products of designed partial chemical synthesis. Although the Cinchona bark is amongst the sources of oldest efficient medicines, the synthetic dimers found most use in the field of asymmetric synthesis. Prominent examples include the Sharpless dihydroxylation and aminohydroxylation ligands, and dimeric phase transfer catalysts. In this article the syntheses of Cinchona alkaloid dimers and oligomers are reviewed, and their structure and applications are outlined. Various synthetic routes exploit reactivity of the alkaloids at the central 9-hydroxyl group, quinuclidine, and quinoline rings, as well as 3-vinyl group. This availability of reactive sites, in combination with a plethora of linker molecules, contributes to the diversity of the products obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.