Abstract

Dimeric (“big”) human placental lactogen has been isolated in near homogeneous form from placental tissue. It consists of a disulfide-linked (stable) form and a noncovalently associated (unstable) form of the native hormone. The two forms were separated by exposure to denaturing conditions and resolution by gel exclusion chromatography. Both forms retained immunological activity, ability to bind mammary membranes, and ability to induce mammary N- acetyllactosamine synthetase in vitro. On a molar basis, stable dimeric placental lactogen was more active than placental lactogen in the radioimmunoassay indicating that the immunological determinants on both monomeric units could bind to antibody. On a molar basis, stable dimeric placental lactogen was equally active with monomeric placental lactogen in competing for mammary gland membrane binding sites, indicating that only one active site in the molecule could interact with the membrane at a time. Stable dimeric placental lactogen was also active in an in vitro bioassay using the induction of N- acetyllactosamine synthetase. It is concluded that dimer formation does not alter the biologically active portion of the placental lactogen molecule. Since the carboxylterminal region (residues 182–191) is involved in the interchain disulfide bonds of dimeric placental lactogen, this portion of the molecule is probably not necessary for its biological activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.