Abstract

A surface-modified mesoporous silica nanoparticle containing dimercaprol monomers was created utilizing the sol-gel condensation process, using tetraethyl orthosilicate (TEOS) as the silica source and poloxamer as the structure directing agent. To accomplish this synthesis, 3-glycidoxypropyl triethoxysilane (GPTS, 20mol%) was incorporated into the silica walls during the sol-gel condensation process, along with TEOS. Furthermore, dimercaprol (DM) monomers were incorporated onto silica surfaces by a ring-opening reaction between GPTS epoxy groups, and dimercaprol hydroxyl groups. The prepared dimercaprol-modified silica adsorbent (MSN-DT NPs) material has been studied using a variety of instruments, including XRD, FT-IR, N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG) analysis, and zeta potential analysis. The MSN-DT NPs material selectively adsorbs mercury ions, with a high adsorption amount of 125mg/g and a removal capability of roughly ~ 90% from the original metal ion mixture comprising other competing metals such as Pb2+, Ni2+, Fe2+, and Zn2+. The MSN-DT NPs adsorbent shows recyclable qualities for up to five cycles when treated with an acidic aqueous solution (0.1M HCl). As a result, the MSN-DT NPs adsorbent may be regenerated and reused up to five times without losing its adsorption effectiveness. The experimental findings showed that the MSN-DT NPs adsorbent may be employed to selectively remove hazardous Hg2+ ions from an aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.