Abstract

Breast cancer is one of the leading causes of cancer-related deaths in women. Chemotherapy remains one of the main clinical treatments for breast cancer. However, this therapy has appreciable side effects. Nanoscale carriers, such as metal nanoparticles and liposomes, are being widely utilized as drug delivery vehicles to achieve precise targeting of tumor cells. In this study, we designed a novel up conversion nanocarriers (UCNCs) host-guest complexation system based on a photolabile capping-like molecule. UCNCs containing epirubicin (EPI) were grafted with a dimer-targeting peptide via cyclodextrin-adamantine host-guest complexation. After entering breast tumor cells with the guidance of the dimer-targeting peptide, the core of the UCNCs upconverted near-infrared light to ultraviolet light which subsequently triggered the intracellular on-demand release of epirubicin. The precise and efficient delivery and release of epirubicin inside breast cancer cells significantly inhibited cancer cells proliferation, migration, and invasion in vitro and decreased the tumor size in vivo. We believe that this UCNCs system is a promising platform for the precise and controllable delivery of various chemotherapy drugs for clinical cancer treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.