Abstract

Based on the data of the gas electron diffraction/mass spectrometry (GED/MS) experiment, the composition of the vapor over rhenium tetrafluoride at T = 471 K was established, and it was found that species of the Re2F8 is present in the gas phase. The geometric structure of the Re2F8 molecule corresponding to D4h symmetry was found, and the following geometric parameters of the rh1 configuration were determined: rh1(Re-Re) = 2.264(5) Å, rh1(Re-F) = 1.846(4) Å, α(Re-Re-F) = 99.7(0.2)°, φ(F-Re-Re-F) = 2.4 (3.6)°. Calculations by the self-consistent field in full active space approximation showed that for Re2F8, the wave function of the 1A1g ground electronic state can be described by the single closed-shell determinant. For that reason, the DFT method was used for a structural study of Re2X8 molecules. The description of the nature of the Re-Re bond was performed in the framework of Atom in Molecules and Natural Bond Orbital analysis. The difference in the experimental values of r(Re-Re) in the free Re2F8 molecule and the [Re2F8]2- dianion in the crystal corresponds to the concept of a triple σ2π4 (ReIV-ReIV) bond and a quadruple σ2π4δ2 (ReIII-ReIII) bond, respectively, which are formed between rhenium atoms due to the interaction of d-atomic orbitals. The enthalpy of dissociation of the Re2F8 molecular form in two monomers ReF4 (ΔdissH°(298) = 109.9 kcal/mol) and the bond energies E(Re-Re) and E(Re-X) in the series Re2F8→Re2Cl8→Re2Br8 molecules were estimated. It is shown that the Re-Re bond energy weakly depends on the nature of the halogen, while the symmetry of the Re2Br8 (D4d) geometric configuration differs from the symmetry of the Re2F8 and Re2Cl8 (D4h) molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call