Abstract
The mechanism of spectral shift and absorption intensity change of the divalent bromocresol purple (BCP) anion was further investigated and it was characterized as a spectrophotometric membrane probe. At high concentrations (1-40 mM), the absorption intensity of th BCP anion at 590 nm (monomer band) decreased markedly with increase of the dye concentration, while another absorption band appeared at 554 nm. Analysis of the change of absorption intensity showed that the mared decrease resulted from dimer formation of BCP (polymer formation at concentrations higher than 20 mM). Wavelengths of maximum absorption (lambdamax) of the BCP anion were determined in various solvents and comparison of these lambdamax's with lambdamax of the BCP anion bound to SR showed that the hydrophobicity of the area of BCP anion binding to SR corresponded to a refractive index of 1.429. While the BCP anion bound to SR showed a monomer spectrum, a dimer band appeared for the BCP anion bound to SR-Pi (phosphorylated protein) with a marked decrease in the absorption intensity at the monomer band, indicating that two polar groups, binding sites for the BCP anions, closely approached each other in the SR-Pi configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.