Abstract

A new decimation scheme is introduced to study localization transitions in tight binding models with long range interaction. Within this scheme, the lattice models are mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient through the system. When applied to the kicked Harper model, the method unveils an intricately nested extended and localized phases in two-dimensional parameter space. In addition to computing transport characteristics with extremely high precision, the renormalization tools also provide a new method to compute quasienergy spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.