Abstract

The F-actin binding cytoskeletal protein α-catenin interacts with β-catenin-cadherin complexes and stabilizes cell-cell junctions. The β-catenin–α-catenin complex cannot bind to F-actin, whereas interactions of α-catenin with the cytoskeletal protein vinculin appear necessary to stabilize adherens junctions. Here we report the crystal structure of nearly full-length human α-catenin at 3.7 Å resolution. α-Catenin forms an asymmetric dimer, where the four-helix bundle domains of each subunit engage in distinct intermolecular interactions. This results in a left handshake-like dimer, where the two subunits have remarkably different conformations. The crystal structure explains why dimeric α-catenin has a higher affinity for F-actin than monomeric α-catenin, why the β-catenin–α-catenin complex does not bind to F-actin, how activated vinculin links the cadherin-catenin complex to the cytoskeleton, and why α-catenin but not inactive vinculin can bind to F-actin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.