Abstract
AbstractThe thermal dimer (290C) of normal methyl linoleate and its hydrogenated form have been examined by mass spectrometry. Parent mass peaks of the hydrogenated dimer show the presence of monocyclic, bicyclic, and tricyclic structures.The monocyclic structure is formed via the conjugation‐Diels‐Alder mechanism.The bicyclic structure is best explained by an extension of the hydrogen transfer free radical coupling mechanism. The noncyclic dehydrodimer resulting from free radical coupling undergoes a relatively rapid intramolecular cyclization to a bicyclic structure, probably by an interval Diels‐Alder reaction. A model noncyclic dehydro‐linoleate dimer was shown to give a bicyclic dimer as the predominant structure under thermal dimerization conditions.The tricyclic dimer may result from intramolecular alkylation of the bicyclic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.