Abstract
Multidimensional data are exploited in many application areas such as scientific data analysis, business intelligence, and geographic information systems. One of the most frequent operations applied to such multidimensional data is the selection of a subspace of the given multidimensional space, which involves predicate evaluation on multiple dimensions. Existing main-memory data layouts optimized for evaluating predicates on the columnar data can be used to accelerate the subspace extraction by sequentially performing filter scans on each dimension one at a time. However, optimization opportunities emerge if we can consider all predicates together. In this paper, we propose DimensionSlice, a new main-memory data layout optimized for evaluating predicates on multiple dimensions. More specifically, the dimension values are sliced into portions and the portions with the same order of each dimension are arranged together. Multiple predicates are simultaneously evaluated with the sliced dimension values during the scan. In addition, by storing the different portions separately, unnecessary loads and computations of lower portions can be eliminated if the evaluation results are assured after examining the upper portions. For further acceleration of scans, the DimensionSlice layout is designed to easily leverage the SIMD capabilities that most mainstream processors are equipped with. Through experiments, we demonstrate the performance gains of the proposed method over the columnar main-memory layout that evaluates the partial predicates one dimension at a time. We also show that the proposed method outperforms the state-of-the-art multidimensional index structure when the selectivity is over a very low threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.