Abstract
We show how a SLAM algorithm based on belief function theory can produce evidential occupancy grid maps that provide a mobile robot with additional information about its environment. While uncertainty in probabilistic grid maps is usually measured by entropy, we show that for evidential grid maps, uncertainty can be expressed in a three-dimensional space and we propose appropriate measures for quantifying uncertainty in these different dimensions. We analyze these measures in a practical mapping example containing typical sources of uncertainty for SLAM. As a result of the evidential representation, the robot is able to distinguish between different sources of uncertainty (e.g., a lack of measurements vs. conflicting measurements) which are indistinguishable in the probabilistic framework.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.