Abstract

Reliability analysis of tunnels considering soil spatial variability was traditionally carried out using Monte Carlo simulations, which are computationally expensive. This study proposes a dimension-reduction spectral representation method (SRM) for simulating parameter stochastic fields to capture uncertainties in soil properties, which can be coupled with the probability density evolution method (PDEM). Additionally, the PDEM is employed to conduct seismic reliability assessments of tunnels in a more efficient manner. By integrating a non-intrusive dynamic random finite element method (FEM), this study explores the horizontal drift angle and vertical relative settlement of tunnel dynamic response under different coefficient of variations (COVs) and horizontal autocorrelation lengths of elastic modulus (E). Results show the changes in COVs have more pronounced effects on the mean and standard deviation of horizontal drift angle and vertical relative settlement of tunnel than alterations in horizontal autocorrelation lengths. A limit state pertaining to the horizontal drift angle and vertical relative settlement is established through the use of a probability density function (PDF) and cumulative distribution function (CDF). The results suggest that the combination of soil spatial variability and PDEM can serve as an effective approach for practical tunnel design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.