Abstract

This paper deals with the estimation of fragility functions for acceleration-sensitive components of buildings subjected to earthquake action. It considers ideally coherent pulses as well as real non-pulselike ground-motion records applied to continuous building models formed by a flexural beam and a shear beam in tandem. The study advances the idea of acceleration-based dimensionless fragility functions and describes the process of their formulation. It demonstrates that the mean period of the Fourier Spectrum, T_m, is associated with the least dispersion in the predicted dimensionless mean demand. Likewise, peak ground acceleration, PGA-, and peak ground velocity, PGV-based length scales are found to be almost equally appropriate for obtaining efficient ‘universal’ descriptions of maximum floor accelerations. Finally, this work also shows that fragility functions formulated in terms of dimensionless varPi-terms have a superior performance in comparison with those based on conventional non-dimensionless terms (like peak or spectral acceleration values). This improved efficiency is more evident for buildings dominated by global flexural type lateral deformation over the whole intensity range and for large peak floor acceleration levels in structures with shear-governed behaviour. The suggested dimensionless fragility functions can offer a ‘universal’ description of the fragility of acceleration-sensitive components and constitute an efficient tool for a rapid seismic assessment of building contents in structures behaving at, or close to, yielding which form the biggest share in large (regional) building stock evaluations.

Highlights

  • Recent earthquakes have highlighted the importance of quantifying the dynamic effects on non-structural building components (Braga et al 2011; Fierro et al 2011)

  • A study has been performed on the estimation of acceleration demands in building structures by means of dimensional analysis principles and low-order continuum models with a view to assessing the fragility of non-structural contents in structures behaving linearly or at the verge of yielding

  • Peak Ground Acceleration and Peak Ground Velocity based length scales are found to be adequate for normalizing the Peak Floor Acceleration values and create dimensionless

Read more

Summary

Introduction

Recent earthquakes have highlighted the importance of quantifying the dynamic effects on non-structural building components (Braga et al 2011; Fierro et al 2011). The objective of this paper is to put forward and assess the benefits of employing seismic floor acceleration fragility functions obtained through formal dimensional analysis and continuum building models. In this respect, it is expected that the formal superiority of dimensionless fragilities in offering an approximate ‘universal description’ of the phenomena (Dimitrakopoulos and Paraskeva 2015) will be translated into lower dispersion values and improved estimates. The paper starts with a brief introduction to the low-order structural representations and principles of dimensional analysis employed This is followed by a discussion on the efficiency of alternative ground-motion length scales in terms of dispersion measures of acceleration response. The fragility functions here proposed constitute an efficient tool for, among other applications, a rapid seismic assessment of building contents in structures behaving at (or close to) yielding which form the biggest share in large (regional) building stock evaluations

Low‐order building models
Ground motion database
Dimensional response analysis
Peak floor acceleration response
Alternative time and length scales for real records
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.