Abstract

The influence of sub-optimal temperatures (T) on the microbial growth rate (μ) has been assessed by means of dimensionless variables: Tdim = [T−Tmin]/[Topt−Tmin] and μdim = μ/μopt. Tmin represents the temperature at which there is no growth, Topt the optimum temperature at which the growth rate, μopt, is maximum. Data sets, growth rate vs temperature, have been taken from the literature for 12 organisms (psychrotrophs, mesophiles and thermophiles). In order to compare these organisms, the power law function has been used: [μdim] = [Tdim]α. The parameters μopt and Topt are determined from direct readings whereas Tmin and αare estimated by means of a non-linear regression. An accurate estimation of Tmin is obtained providing low growth rate data are available. A wide range of optimal temperatures where the growth rate almost equals μopt prevents one from obtaining a narrow confidence interval forα. On the basis of the analysis hereafter developed, thermophiles are characterized by values of the power α less than mesophiles and psychrotrophs. Almost all of these values are significantly different from two, previously determined for Staphylococcus xylosus and widely used for predicting the microbial growth in foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call