Abstract

We aim at dimensioning fixed broadband microwave wireless networks under unreliable channel conditions. As the transport capacity of microwave links is prone to variations due to, e.g., weather conditions, such a dimensioning requires special attention. It can be formulated as the determination of the minimum cost bandwidth assignment of the links in the network for which traffic requirements can be met with high probability, while taking into account that transport link capacities vary depending on channel conditions. The proposed optimization model represents a major step forward since we consider dynamic routing. Experimental results show that the resulting solutions can save up to 45% of the bandwidth cost compared to the case where a bandwidth over-provisioning policy is uniformly applied to all links in the network planning. Comparisons with previous work also show that we can solve much larger instances in significantly shorter computing times, with a comparable level of reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call