Abstract

In the present study, the potential application of novel doped-MMO (Ti/IrO2/Ta2O5/SnO2-Sb2O4) anodes as an alternative source to costly electrodes have been visualized for the EO treatment of urea. Parametric optimization for the treatment of urea through the EO process by doped-MMO has been done successfully. The high R2 values of both responses i.e. % Degradation and energy consumption for quadratic suggested by BBD under RSM advocates a good correlation between predicted and experimental data. The maximum % Degradation and energy consumption at optimized were found to be 91.2%, 51.53kWh m-3 for urea respectively. Additionally, efforts were made to minimize treatment time further by implementing a dual effect, namely photo-electrocatalysis. The anode was found to be relatively stable even after 120 runs. The analysis of treated urea solution was verified in terms of total organic carbon (TOC) 90.0% reduction. The average operating cost of the electro-oxidation treatment process is determined to be 1.91 $ m-3. The results of this study demonstrate the potential of doped-MMO as a promising concept for the treatment of wastewater that can be successfully applied in real life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call