Abstract

Cracking, warping, and decaying stemming from wood's poor dimensional stability and durability are the most annoying issues of natural wood. There is an urgent need to address these issues, of which, sustainable and green chemical treatments are favorably welcomed. Herein, we developed a facile method through the incorporation of environmentally friendly biopolymer lignin into wood cells for wood dimensional stability and durability enhancement. Enzymatic hydrolysis lignin (EHL) was dissolved into various solvents followed by impregnation and drying to incorporate lignin into wood cells. Impregnation treatment was developed to incorporate into wood to improve its dimensional stability, durability, and micromechanics. The anti-swelling efficiency reached up to 99.4 %, the moisture absorption decreased down to 0.55 %, the mass loss after brown rot decay decreased to 7.22 %, and the cell wall elasticity as well as hardness increased 8.7 % and 10.3 %, respectively. Analyses acquired from scanning electron microscopy, fluorescent microscopy, and Raman imaging revealed that the EHL was successfully colonized in cell lumen as well as in cell walls, thus improved wood dimensional stability and durability. Moreover, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed EHL interaction with the cell wall components, thus the wood mechanical property was not impaired significantly, whereas nanoindentation data indicated even slight mechanical enhancement on the cell walls. This facile approach can improve the wood properties in multiple aspects and remarkably enhance the outdoor performance of modified wood products. In addition, using lignin as a natural modifying agent to improve wood performance will have a great positive impact on the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call