Abstract
This paper deals with the formulation of the dimensionally homogeneous extended Jacobian matrix, which is an important issue for the performance analysis of f degrees-of-freedom (f ≤6) parallel manipulators having coupled rotational and translational motions. By using the f independent coordinates to define the permitted motions and (6-f) independent coordinates to define the restricted motions of the moving platform, the 6×6 dimensionally homogeneous extended Jacobian matrix is derived for non-redundant parallel manipulators. The conditioning number of the parallel manipulators is computed to evaluate the homogeneous extended Jacobian matrix, the homogeneous actuation wrench matrix, and the homogeneous constraint wrench matrix to evaluate the performance of the parallel manipulators. By using these indices, the closeness of a pose to different singularities can be detected. An illustrative example with the 3-RPS parallel manipulator is provided to highlight the effectiveness of the approach and the proposed indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.