Abstract

We show how to sketch semidefinite programs (SDPs) using positive maps in order to reduce their dimension. More precisely, we use Johnson–Lindenstrauss transforms to pro- duce a smaller SDP whose solution preserves feasibility or approximates the value of the original problem with high probability. These techniques allow to improve both complexity and storage space requirements. They apply to problems in which the Schatten 1-norm of the matrices specifying the SDP and also of a solution to the problem is constant in the problem size. Furthermore, we provide some results which clarify the limitations of positive, linear sketches in this setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.