Abstract
A new method is proposed for finding a low dimensional subspace of high dimensional microarray data. We developed a new criterion for constructing the weight matrix by using local neighborhood information to discover the intrinsic discriminant structure in the data. Also this approach applies regularized least square technique to extract relevant features. We assess the performance of the proposed methodology by applying it to four publicly available tumor datasets. In a low dimensional subspace, the proposed method classified these tumors accurately and reliably. Also, through a comparison study, we verify the reliability of the dimensionality reduction and discrimination results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.