Abstract

As databases increasingly integrate different types of information such as multimedia, spatial, time-series, and scientific data, it becomes necessary to support efficient retrieval of multidimensional data. Both the dimensionality and the amount of data that needs to be processed are increasing rapidly. Reducing the dimension of the feature vectors to enhance the performance of the underlying technique is a popular solution to the infamous curse of dimensionality. We expect the techniques to have good quality of distance measures when the similarity distance between two feature vectors is approximated by some notion of distance between two lower-dimensional transformed vectors. Thus, it is desirable to develop techniques resulting in accurate approximations to the original similarity distance. We investigate dimensionality reduction techniques that directly target minimizing the errors made in the approximations. In particular, we develop dynamic techniques for efficient and accurate approximation of similarity evaluations between high-dimensional vectors based on inner-product approximations. Inner-product, by itself, is used as a distance measure in a wide area of applications such as document databases. A first order approximation to the inner-product is obtained from the Cauchy-Schwarz inequality. We extend this idea to higher order power symmetric functions of the multidimensional points. We show how to compute fixed coefficients that work as universal weights based on the moments of the probability density function of the data set. We also develop a dynamic model to compute the universal coefficients for data sets whose distribution is not known. Our experiments on synthetic and real data sets show that the similarity between two objects in high-dimensional space can be accurately approximated by a significantly lower-dimensional representation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.