Abstract
Classification problem especially for high dimensional datasets have attracted many researchers in order to find efficient approaches to address them. However, the classification problem has become very complicatedespecially when the number of possible different combinations of variables is so high. In this research, we evaluate the performance of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature selection algorithms when applied to high dimensional datasets.Our experiments show that in terms of dimensionality reduction, PSO is much better than GA. PSO has successfully reduced the number of attributes of 8 datasets to 13.47% on average while GA is only 31.36% on average. In terms of classification performance, GA is slightly better than PSO. GA‐ reduced datasets have better performance than their original ones on 5 of 8 datasets while PSO is only 3 of 8 datasets.Keywords: feature selection, dimensionality reduction, Genetic Algorithm (GA), Particle Swarm Optmization (PSO).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EMITTER International Journal of Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.