Abstract

Life Cycle Assessment quantifies the multi-dimensional impact of goods and services and can be handled by Multi-Criteria Decision Analysis. In Multi-Criteria Decision Analysis, Robust Ordinal Regression manages all the compatible preference functions at once when assessing a set of alternatives and a group of preferences on reference alternatives. Robust Ordinal Regression is thus a versatile method of reducing the cognitive effort required by decision makers for eliciting their preference structures in Life Cycle Assessment, although it does not directly operate on noisy alternatives and requires Stochastic Multicriteria Acceptability Analysis to deal with such scenarios.We propose integrating a dimensionality reduction technique, Principal Component Analysis, and Robust Ordinal Regression methods, to reduce the problem dimensionality and ensure the actual problem features are considered.A generated dataset, a dataset from literature and a Life Cycle Assessment case study are used to test the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.