Abstract

We investigated the electronic structures of the 5d Ruddlesden-Popper series Sr n+1Ir nO3n+1 (n=1, 2, and infinity) using optical spectroscopy and first-principles calculations. As 5d orbitals are spatially more extended than 3d or 4d orbitals, it has been widely accepted that correlation effects are minimal in 5d compounds. However, we observed a Mott insulator-metal transition with a change of bandwidth as we increased n. In addition, the artificially synthesized perovskite SrIrO3 showed a very large mass enhancement of about 6, indicating that it was in a correlated metallic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.