Abstract

The dimensionality of the crystal structure plays an important role in the electronic structures of materials. Ruddlesden-Popper perovskite oxides offer an attractive platform for studying this role due to dimensional flexibility. The effects of dimensionality on physical properties in those oxides have been widely reported. However, the study of dimensional dependence on the chemical properties is still lacking. Here, we synthesized a series of Ruddlesden-Popper perovskite nickelates LanSrNinO3n+1 (n = 1, 2, 3, and ∞) to explore the role of dimensionality on oxygen-evolution reaction (OER) performance. As the dimensionality increased with n, the nickelates exhibited an enhanced OER activity. We found that the weakening of electron correlations among Ni 3d electrons by increasing the dimensionality induced an insulator-to-metal transition and a strengthened Ni-O hybridization, both of which accelerated the OER kinetics. This work sets up a bridge between the dimensionality and electrocatalysis, which provides guidance for designing highly efficient oxygen-evolving catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.