Abstract

Two experiments investigated dimension-based attentional processing in a complex singleton conjunction search task. In Experiment 1, observers had to discern the presence of a singleton target defined by a conjunction of size (fixed primary dimension) with either color or motion direction (secondary dimension). Similar to findings in singleton feature search, changes (vs. repetitions) of the secondary dimension across trials resulted in reaction time (RT) costs--which were, however, increased by a factor of 3-5 compared to singleton feature search. In Experiment 2, the coding of search-critical, dimensional saliency signals was investigated by additionally presenting targets redundantly defined in both secondary dimensions, with redundant-target signals being either spatially coincident or separate (i.e., one vs. two target items). Redundant-target RTs significantly violated Miller's (Cognit Psychol 14:247-279, 1982) race model inequality only when redundant signals were spatially coincident (i.e., bound to a single object), indicating coactive processing of target information in the two secondary dimensions. These findings suggest that the coding and combining of signals from different visual dimensions operates in parallel. Increased change costs in singleton conjunction search are likely to reflect a reduced amount of weight available for processing the secondary target-defining dimensions, due to a large amount of weight being bound by the primary dimension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call