Abstract

Abstract Plantation-grown poplar (Populus cathayana) is regarded as a source of low-quality wood, with poor dimensional stability and low decay resistance. In this study, poplar wood was impregnated with sodium montmorillonite (Na-MMT) or organo-montmorillonite (O-MMT), furfuryl alcohol (FA, at concentrations of 15%, 30% and 50%), separately or in their combinations to prepare clay treated, furfurylated, and clay-reinforced furfurylated wood, respectively. The two-step method by introducing Na-MMT first and then FA and organic modifier was feasible to achieve a reasonable penetration. These components could entirely enter the wood cell lumen or partly enter the wood cell wall, and thus initiate a series of reactions. Compared with Na-MMT reinforced furfurylated wood (M-F), the O-MMT reinforced furfurylated wood (O-F) exhibited better dimensional stability (ASE up to 71%) and decay resistance (3.2% mass loss). Moreover, O-MMT played a predominant role in decay resistance of O-MMT reinforced furfurylated wood. Even at low O-MMT loadings, the modified wood had a significant inhibitory effect on the white-rot decay fungus Trametes versicolor. Based on an overall evaluation, O-MMT reinforced furfurylated wood seemed to provide an optimal choice for both moist or wet conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call